Project 11 — Guess the number
Task: Give the user ten guesses at a random number between 1 and 1 000.

Objects: Title label and instructions label, dialog and message boxes, buttons to start and
exit the game.

Events: Mouse click on command buttons, and on dialog box buttons.
1. Start a new project and create the following form:

w. Gueszsing Game _ O] x|

buess the Mumber bame

The number is between | and 1 000
You have 10 quesses

Quit |

Leave a gap in the middle as indicated as we will be placing dialog boxes there as the
program runs.

| i Guessing Game Mi=]E3

~ [uess the Number Game

‘ The mmber is between 1 and 1 000
You have 10 quesses

I Attempt 1
Enter your guess

|00

|

2. a Name the start and quit buttons.
b Add code to the QuitButton.
The code for the StartButton is:

(Hint: the use of the fab and the backspace keys will assist with effective
indentation.)

StartButton =] ICIick
Private Sub StartButton Clicki)
Dim Count &s Integer, Number bLs Integer
Dimm Correct As Boolean
Dim Guess Az 3tring
Randomi=ze
MNurber = Int(Bnd * 1000) + 1 'Choose number to guess
Carrect = False
Count = 1
Do While Count < 11 ind Not Correct
Guess = InputBox ("Enter wour guess™, "httempt " & Count)
If ValiGuess) = Number Then
M=zgEBox "Correct — Well Done!"™, vhExclammation
Correct = True
Else
If Guess < Mumber Then
MzgEBox "Too Low®™, vhExclamatioh, TAttewpt T & Count
El=se
M=gBox "Too High", vwbhExclamation, "Attewpt ™ & Count
End If
count = Count + 1 'Count attenpts made
End If
Loop
Mz=zgBox ("The nuwkber was " & Number)
End Sub

(This will all be explained shortly.)

3. a Run the program (saving with appropriate file names).
b Make any improvements you wish (e.g. adjust placement of the window on screen,
or add tooltips).

There are two new devices used in the project, an InputBox and a MsgBox. These are examples of
dialog boxes.

Attempt 4

Enter pour guess

&

The line:
Guess = InputBox (“Enter your guess”, “Attempt “ & Count)

uses an input dialog box to get the user to enter their next guess. An input dialog box must be used
in this way i.e. assigned to a variable. Note also that the value that is input is a string. Because of

this, in the first if statement we have to use the Va/ function to convert the text from the input box
into a numeric value so we can compare it with the integer variable Number.

The first text in quotes ("Enter your guess”) is the message to the user. The second part
(“Attempt “ & Count) is the caption on the dialog box. (If their is no second set of quotes
the project name is displayed.) In this case we also wished to show the attempt number. We did
this by joining the variable Count to the text using the & symbol.

4. If we wish we can also stipulate the default value for the input box. Try the following:
Guess = InputBox (“Enter your guess”,“Attempt “ & Count, “500”)
Separate the text in quotes with commas. The third value is the initial value to be displayed.

5. The MsgBox dialog is used to display messages.

& Too Low

Re-run the program with the following changes for vbExclamation to change the graphic
displayed in the dialog box:
Change from: MsgBox “Too low”, vbExclamation

to: MsgBox “Too low”, vbQuestion

or: MsgBox “Too low”, vbInformation
You can also see the effect of replacing vbExclamation with any number between 0 to 5:
e.g. MsgBox “Too low”, 2
For an explanation of what each of these refer to check out MsgBox Function in Help.
Note also we have used & to join the variable Count to the caption in each of the three
message boxes as we did with the input box.

Do while

The pseudocode for the program in project 11 is:

NUMBER = random 1000
CORRECT = false
CouNnT =1
do while COUNT < 10 and not CORRECT
read GUESS
if GUESS = NUMBER then
write “Correct — Well Done”
CORRECT = true
else
if GUESS < NUMBER then
write “Too low”

else
write “Too high”
end if
COUNT = COUNT + 1
end if
loop
write “The number was” NUMBER

In this pseudocode we have a nested if selection inside of a while loop:

do while

if

The variable Number holds the random value to be guessed, Correct records if the user has the
right value, Guess holds their current attempt, and count records the number of attempts.

The part of the program that does the work is the while loop. This is controlled by two conditions.
Count has to stay under 11 and Correct has to stay false for the loop to continue.

Before the loop starts Count (how many guesses the user has taken) is set to 1, and then every time
the loop executes Count is incremented (Count = Count + 1). When it reaches 11 the loop
stops whether the user has guessed correctly or not. This is how the user is given 10 goes to guess
the number. (The setting of Count to 1 before the loop starts is known as initialising the loop.)

The variable Correct is used to stop the loop if the user does guess the number before count gets
over 10. Before the loop starts Correct is set to False; it only becomes True if the user guesses the
number.

This condition has been written as:
Do While Count < 11 And Not Correct
but it could also have been written as:
Do While Count < 11 And Correct = False

The two conditions in the while statement are joined with the reserved word And. This means the
loop will only run if both conditions are true.

Notice again the use of indentation in the above code. Everything that is to be repeated as part of
the while loop is indented to make it easier to see that that section of code belongs together. In the
same way the pseudocode belonging to the then and else parts of the if statements are also
indented.

Forms of iteration

The while loop is a pre-tested indefinite iteration. Pre-tested means the loop is tested before it runs
— if either condition is false the code in the while loop will not be executed. It is indefinite in that

