Project 9 — Poker machine

In this project we will use the if'selection to build a simple poker machine simulation. We will also
review the software development cycle we discussed in Unit 2.

Definition

We will produce a simple poker machine simulation that displays three random numbers when the
user pulls a handle. If any of the three numbers is a 7 the user “wins”.

Specification

Input will be via a track bar that the user “pulls”. This will initiate the generation of three random
numbers which will be displayed on three labels. At the bottom of the pull the track bar will reset
to the top. If any of the three numbers is a 7 then a picture of money will be displayed to show the
win. The program will be prepared as a Delphi application with on-screen cues to the user.

Design
The algorithm for this process in pseudocode is:

if TRACKPOSITION = 100 then
TRACKPOSITION = 0
ONE = random 10
TwoO = random 10
THREE = random 10
write ONE
write TWO
write THREE
if ONE = 7 or TWO = 7 or THREE = 7 then
write MONEYIMAGE

The first if checks to see if the track bar has been pulled all the way to the bottom. If it has it resets
the track bar to the top. Three random numbers (one, two and three) are generated and displayed.
The second if checks to see if any of the values is 7; if it is then the picture of the money is
displayed. (This is an example of a nested if, one if statement is inside another. We will investigate
this shortly.)

Our screen will need a title, three labels for the number display, a vertical track bar for the pull
handle, an image to display when money is won and an exit button. Sketching it might look like
this:

/ Poker Machine \

3 7 2

N (@) L1




Implementation

1.
2.

Start Delphi and create a new application.

a

Place three labels to display the numbers, and a label for the title on the form. (For
once we will not rename these labels because Labell, Label? and Label3 will be
appropriate names for the three numbers to be displayed.)

Set suitable fonts and properties for the labels but delete their current captions. Place
a suitable title in the top label.

From the Win32 tab of the component palette add a track bar nhn with a vertical
orientation (trVertical). Call it HandleTrack, set its Min property to 0 and Max to
100. Make TickMarks tmBoth and TickStyle tsNone. Set ThumbLength to 30 to
make the handle wider.

Place an image control on the form. Link it to a picture of money and set its Visible
property to False. (It will only appear when there is a win.)

Finally add a button to exit or quit and code it.
Save your work to the Project 9 folder.

Your screen should now look something like this:




3. Double click on the track bar and add the following code:

B poker.pas 1 =]
poker | = -
procedure TPokerForm. HandleTrackChange (Sender: TObject):
A Use trackbar to simulate poker machine
rar one, two, three : integer:
hegin
randomize;
if HandleTrack.Position = 100 then AAAF end of pull
hegin
HandleTrack.FPosition := 0; Arfreset handle to top
one := random(lO] + 1: Arselect values
two = randomi(l0] + 1:
three = randomi{l0) + 1;
Labhell.Caption := IntTol3tr (one) ; AAdiaplay ralues
LabhelZ.Caption := IntTaoltr (two) ;
Labhel3.Caption := IntTol3tr (three):;
if (one = 7) or (two = 7)) or [(three = 7) then Fifcheck for win
bhegin
MoneyImage.Visible ::= Lrue; SAwan
heep:
end
else
MoneyImage.Visible := false: SAno wain
end;
end;

4. a Add tool tips to the track bar and quit button. —
b Change the cursor property of the track bar to crHandPoint.

5. Re-save the project and run it by “pulling” the handle of the track bar down. W

Besides the use of the nested if the main point of interest in this program is the use of a random
number generator. For this we need two functions:

randomize;

and
one := random(10) + 1;
two := random(10) + 1;
three := random(10) + 1;

The randomize reads a digit from your computer’s system clock to get a seed number to start with.
The random function then works from this seed and generates a value between 0 and 1. This value
is multiplied by the value in brackets and converted to an integer. The +1 ensures that the number
stored in the variable is from 1 to 10, and not between 0 and 9.

To understand the need for the +1 we will look at two examples. Say the random function
generates a very low value such as 0.012. This value is multiplied 10 (0.12) and rounded down to
0. A high random value of say 0.909 multiplied by 10 (9.09) and rounded down is 9. Without the
+1 random values will be only between 0 and 9.

Note also the use of beep to generate a sound when a 7 appears.

Now to complete the software development cycle:



Test



